Spectral Methods for Data Clustering

نویسنده

  • Wenyuan Li
چکیده

With the rapid growth of the World Wide Web and the capacity of digital data storage, tremendous amount of data are generated daily from business and engineering to the Internet and science. The Internet, financial realtime data, hyperspectral imagery, and DNA microarrays are just a few of the common sources that feed torrential streams of data into scientific and business databases worldwide. Compared to statistical data sets with small size and low dimensionality, traditional clustering techniques are challenged by such unprecedented high volume, high dimensionality complex data. To meet these challenges, many new clustering algorithms have been proposed in the area of data mining (Han & Kambr, 2001). Spectral techniques have proven useful and effective in a variety of data mining and information retrieval applications where massive amount of real-life data is available (Deerwester et al., 1990; Kleinberg, 1998; Lawrence et al., 1999; Azar et al., 2001). In recent years, a class of promising and increasingly popular approaches — spectral methods — has been proposed in the context of clustering task (Shi & Malik, 2000; Kannan et al., 2000; Meila & Shi, 2001; Ng et al., 2001). Spectral methods have the following reasons to be an attractive approach to clustering problem:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories

In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...

متن کامل

Landmark selection for spectral clustering based on Weighted PageRank

Spectral clustering methods have various real-world applications, such as face recognition, community detection, protein sequences clustering etc. Although spectral clustering methods can detect arbitrary shaped clusters, resulting thus in high clustering accuracy, the heavy computational cost limits their scalability. In this paper, we propose an accelerated spectral clustering method based on...

متن کامل

The Comparison of Fuzzy Clustering Methods for Symbolic Interval-valued Data

Interval-valued data can find their practical applications in such situations as recording monthlyinterval temperatures at meteorological stations, daily interval stock prices, etc. The primary objectiveof the presented paper is to compare three different methods of fuzzy clustering for interval-valuedsymbolic data, i.e.: fuzzy c-means clustering, adaptive fuzzy c-means clustering a...

متن کامل

A survey of kernel and spectral methods for clustering

Clustering algorithms are a useful tool to explore data structures and have been employed in many disciplines. The focus of this paper is the partitioning clustering problem with a special interest in two recent approaches: kernel and spectral methods. The aim of this paper is to present a survey of kernel and spectral clustering methods, two approaches able to produce nonlinear separating hype...

متن کامل

Application of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors

In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...

متن کامل

Large-Scale Spectral Clustering on Graphs

Graph clustering has received growing attention in recent years as an important analytical technique, both due to the prevalence of graph data, and the usefulness of graph structures for exploiting intrinsic data characteristics. However, as graph data grows in scale, it becomes increasingly more challenging to identify clusters. In this paper we propose an efficient clustering algorithm for la...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009